Ding projective modules with respect to a semidualizing bimodule
نویسندگان
چکیده
منابع مشابه
Gorenstein Projective Dimension with Respect to a Semidualizing Module
We introduce and investigate the notion of GC -projective modules over (possibly non-noetherian) commutative rings, where C is a semidualizing module. This extends Holm and Jørgensen’s notion of C-Gorenstein projective modules to the non-noetherian setting and generalizes projective and Gorenstein projective modules within this setting. We then study the resulting modules of finite GC-projectiv...
متن کاملGorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کاملSyzygy Modules with Semidualizing or G-projective Summands
Let R be a commutative Noetherian local ring with residue class field k. In this paper, we mainly investigate direct summands of the syzygy modules of k. We prove that R is regular if and only if some syzygy module of k has a semidualizing summand. After that, we consider whether R is Gorenstein if and only if some syzygy module of k has a G-projective summand.
متن کاملLIFTING MODULES WITH RESPECT TO A PRERADICAL
Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2015
ISSN: 0035-7596
DOI: 10.1216/rmj-2015-45-4-1389